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1 Introduction

The primary objective of the ongoing and imminent physics programmes at the Tevatron

and LHC, is to elucidate the nature of electroweak symmetry breaking. The great majority

of the effort in this direction is devoted to the hunt for the Higgs boson, the origin of this

symmetry breaking in the Standard Model (SM) [1–4].

Of all the ways in which the SM Higgs boson can be produced, the gluon fusion pro-

cess [5], in which it couples to colliding gluons via a top quark loop, has the largest cross

section for Higgs boson masses less than ∼1TeV. This process is of great importance for

the detection of the Higgs boson at the Tevatron and, more so, at the LHC, particularly

in the low mass region, favoured by the latest fits of the Standard Model to electroweak

precision data [6], where the decay of the Higgs boson into two photons is known to give a
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clean experimental signal. Although observing a narrow resonance in the diphoton invari-

ant mass spectrum should be possible using only the experimental data [7], determining

the quantum numbers and couplings of the resonance i.e. determining that it really is a

fundamental scalar and, moreover, the SM Higgs boson, will involve a comprehensive anal-

ysis of a number of channels, using accurate, flexible, Monte Carlo simulations to predict

distributions for signals and backgrounds.

A key part of that identification procedure will be the measurement the couplings

of the Higgs boson to the weak gauge bosons and the top quark. Although the gluon

fusion process directly probes the latter, associated QCD radiation renders it a significant

background to the vector boson fusion process (VBF), in which the Higgs boson originates

from HWW and HZZ vertices. Precise simulations of the gluon fusion process are then

also required to model the extent to which these events contaminate the VBF signal [8–10].

Another direct probe of Higgs boson interactions with electroweak gauge bosons is

the Higgs-strahlung process [11, 12]. At leading order this consists of a quark anti-quark

annihilation producing a virtual vector boson (V = W/Z), which becomes on-shell by radi-

ating a Higgs boson. This channel is particularly important for Higgs boson searches at the

Tevatron [13]. The cross section for Higgs-strahlung processes at the LHC is approximately

one order of magnitude larger than at the Tevatron, however, the backgrounds scale up

by a much greater factor. In spite of these difficulties the Higgs-strahlung processes can

still be observed, notably in the γγ and W+W− decay channels, where significant back-

ground rejection can be achieved (see for example ref. [14] for recent experimental studies).

Interest in the bb̄ plus leptons decay channel has also recently been revived through the

observation that a highly collimated bb̄ jet, from a boosted Higgs boson, could provide

a clean signature [15, 16]. These processes were recommended for inclusion in studies to

determine Higgs boson couplings in ref. [17]. As with the gluon fusion process, accurate

Monte Carlo simulations will be central to such studies.

Lately combined Tevatron analyses of the gluon fusion and Higgs-strahlung channels

have begun to show sensitivity to Higgs boson production [18]. Presently these studies

exclude, at the 95% confidence level, the existence of a SM Higgs boson with a mass in

the range 160 - 170 GeV. This exclusion limit largely follows from analysis of the gluon

fusion channel in which the Higgs decays into a W+W− pair. Monte Carlo simulations of

Higgs-strahlung and gluon fusion processes were essential in obtaining these measurements.

In recent years research in Monte Carlo simulations has seen major progress, most

significantly in the extension of existing parton shower simulations to consistently include

exact next-to-leading order corrections [19–34] and, separately, in the consistent combi-

nation of parton shower simulations and high multiplicity tree-level matrix element gen-

erators [35–40]. The first successful NLO matching scheme was MC@NLO [19–24] which

has been realised using the HERWIG event generator for many processes. This method

has two draw backs; first, it involves subtracting the parton shower approximation from

the NLO calculation, which can lead to unphysical negative weight events, second, the

implementation of the method is fundamentally dependent on the details of the parton

shower algorithm. In 2004 a new formalism known as POWHEG (POsitive Weight Hardest

Emission Generator [26]) was derived, achieving the same aims as MC@NLO but with the
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added benefits of only generating physical, positive weight, events as they occur in nature,

and of being independent of the details of the parton shower algorithm. This method

has been already successfully applied to a number of phenomenologically important pro-

cesses [25, 27, 30–34, 41, 42].

In this paper we describe the application of the POWHEG method to Monte Carlo sim-

ulations for Higgs boson production via gluon fusion and Higgs-strahlung processes, within

the Herwig++ [43, 44] event generator. We include a complete description of truncated

shower effects.1 Our primary aim is to present the ingredients used in the simulations and

to validate them, where appropriate, against existing calculations.

The structure of the paper is as follows. In section 2 we briefly review the main fea-

tures of the POWHEG method. In section 3 we collect the essential formulae relating to the

NLO cross sections, for implementation in the program. In section 4 we give details of the

event generation process for the hard configurations. This is accompanied by a descrip-

tion of how the hard configurations are subsequently reproduced by the angular-ordered

parton shower, including truncated showering effects, in respect of the colour coherence

phenomenon manifest in soft wide angle gluon emissions. In section 5 we present the re-

sults of our implementation, comparing it to the MCFM and MC@NLO generators, before

summarizing our findings in section 6.

2 The POWHEG formalism

The central formula in the POWHEG approach is derived by manipulating and modifying,

through the inclusion of formally higher order terms, the NLO differential cross section,

such that it has the same form as that given by the parton shower [26]. For a given N -body

process this is

dσ = B (ΦB) dΦB

[
∆

R̂
(0) +

R̂ (ΦB,ΦR)

B (ΦB)
∆

R̂
(kT (ΦB ,ΦR)) dΦR

]
, (2.1)

where B (ΦB) is defined as

B (ΦB) = B (ΦB) + V (ΦB) +

∫
dΦR

[
R̂ (ΦB ,ΦR) −

∑

i

Ci (ΦB ,ΦR)

]
, (2.2)

with B (ΦB) the leading-order contribution, dependent on the Born variables, ΦB, which

specify a point in the N-body phase space. V (ΦB) is a finite contribution arising from

the combination of unresolvable, real emission and virtual loop corrections. The remaining

terms are due to the N+1-body real emission processes, hence they have an additional

dependence on the radiative variables, ΦR, which parametrize the phase space associated

with the extra parton. The real emission term, R̂ (ΦB,ΦR), is given by the product of

the parton flux factors with the relevant squared real emission matrix element, summed

1Currently, only the Herwig++ POWHEG simulation of the Drell-Yan process includes a complete treat-

ment of truncated shower effects [32].
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over each channel contributing to the NLO cross section. Ci (ΦB ,ΦR) denotes a combina-

tion of real counterterms/counter-event weights, regulating the singularities in R̂ (ΦB ,ΦR).

Finally, the POWHEG Sudakov form factor, ∆
R̂
, is defined as

∆
R̂

(pT ) = exp

[
−
∫

dΦR
R̂ (ΦB ,ΦR)

B (ΦB)
θ (kT (ΦB,ΦR) − pT )

]
, (2.3)

where kT (ΦB,ΦR) tends to the transverse momentum of the emitted parton in the soft

and collinear limits.

To O (αS) eq. (2.1) is just the usual NLO differential cross section. The analogous

parton shower expression is given by replacing B (ΦB) → B(ΦB) and the real emission

corrections R̂ (ΦB ,ΦR) by their collinear approximation, i.e. replacing the argument of

the Sudakov form factor by a sum of Altarelli-Parisi kernels. Typically parton shower

simulations generate an N -body configuration according to B (ΦB) and then shower it using

such a Sudakov form factor. In the POWHEG formalism the initial N -body configuration

is instead generated according to B (ΦB), and retained with probability ∆
R̂

(0) as a non-

radiative event, or, showered to give the hardest emission with pT = kT (ΦB,ΦR), with

probability ∆
R̂

(pT ) (eq. (2.1)). Further, lower pT , emissions represent terms of next-to-

next-to-leading-order (NNLO) and beyond, hence we can return to the usual parton shower

formulation to simulate these. Provided the perturbative approach is valid, i.e. provided

the next-to-leading order terms are smaller than the leading order ones, it is clear from

eq. (2.2) that B (ΦB) is positive, therefore no negative weights arise.

Furthermore, it is well known that when a bunch of collimated QCD charges emit

a gluon at wide angle, the intensity of the radiation is proportional to the coherent sum

of emissions from the constituents, viz. the jet parent. This effect is manifest in the

perturbative series as large soft logarithms. The other major triumph of the POWHEG [26]

approach, besides avoiding negative weights, is in rigorously decomposing the angular-

ordered parton shower into a truncated shower, describing soft wide angle radiation, the

hardest emission, as described above, and a further vetoed shower comprised of lower pT ,

increasingly collinear emissions.

We implement the POWHEG formalism in fullness according to the following procedure:

• generate N - and N+1-body configurations according to eq. (2.1);

• directly hadronize any N -body, non-radiative, events;

• map the radiative variables parametrizing the emission into the evolution scale, mo-

mentum fraction and azimuthal angle (q̃h, zh, φh), from which the parton shower

would reconstruct identical momenta;

• take the initial N -body configuration, ΦB, generated from B (ΦB), and evolve the

emitting leg from the default initial scale down to q̃h using the truncated shower;

• insert a branching with parameters (q̃h, zh, φh) into the shower when the evolution

scale reaches q̃h;

• generate pT vetoed showers from all external legs.
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3 Next-to-Leading Order cross sections

The NLO ingredients needed to implement the POWHEG method for Higgs-strahlung pro-

cesses can be performed in the same way as ref. [32] due to the careful organization of the

Drell-Yan differential cross section in our earlier work. There we explicitly factorized the

real emission corrections to the leading-order q + q̄ → l + l̄ process at the level of the phase

space and the real emission matrix elements. This meant that the radiative variables could

be generated completely independently from the details of the decay of the off-shell vector

boson. We refer the reader to ref. [32] for details of those matrix elements.

Since the diagrams involved in the NLO corrections to Drell-Yan and Higgs-strahlung

processes are identical up to replacing the final-state lepton pair with a vector boson and

a Higgs boson, the factorized NLO differential cross section is exactly the same as that

in ref. [32] for the Drell-Yan process; one simply replaces the q + q̄ → l + l̄ leading-order

matrix element with that for q + q̄ → V + H throughout. No information regarding spin

correlations is lost in this procedure and the full NLO distribution is generated without

approximation. This method is originally due to Kleiss [45, 46] and was extended for use

in our POWHEG simulation, with a view to making other processes easier to implement.

Due to the complexity of the 4-body final state (we include the decays of V and H) and the

subtleties of the Monte Carlo algorithm, we have carried out detailed comparisons against

the parton level NLO simulation MCFM [47]. Results of these comparisons are given later

in section 5.

The NLO cross section for Higgs boson production via gluon fusion was first calculated

in refs. [48, 49], in the infinite top-quark mass limit. Later this calculation was improved to

exactly include the effects of the finite top mass in [50], where it was found that the infinite

top-quark mass limit provided an excellent approximation to the full result; below the tt̄

threshold the exact and approximate calculations agree at the level of 10% [7]. In the

last decade the NNLO corrections were also fully computed by three independent groups,

in the infinite top-quark mass limit [51–54]. More recently a parton level Monte Carlo

program accurate to NNLO has become available [55, 56]. A key point arising from this

theoretical activity is that the dominant perturbative corrections to the total cross section

originate from virtual and soft-gluon corrections, which explains the surprising accuracy of

the infinite top-quark mass approximation for mH ≤ 2mt [57].

In our simulation we use the infinite top-quark mass limit. Although the NLO formulae

in [48, 49] are helpful, they were only used to compute the most inclusive of measurements,

namely the total cross section. Further work is needed to obtain a form suitable for a

fully differential Monte Carlo simulation. In this section we collect the ingredients that

arise in the NLO calculation for g + g → H, necessary for the implementation of the

POWHEG method.

3.1 Kinematics and phase space

Here we restrict ourselves to considering leading-order processes of the type,

p̄⊕ + p̄⊖ → p̄1 + . . . + p̄N , in which all the particles in the N -body final state are either

massive or colourless. For such processes the NLO corrections may contain soft singu-
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larities and initial-state collinear singularities only. The incoming hadron momenta are

labeled P©, for hadrons incident from the ±z directions, respectively. It therefore follows

that the momenta of the colliding, massless partons, with momentum fractions x̄⊕ and x̄⊖,

are given by p̄© = x̄©P©. The momentum of the ith final-state parton produced in the

leading-order process is denoted p̄i.

Using p̄ to represent the sum of all p̄i, and ȳ to signify the rapidity of p̄, the phase

space for the leading-order process can be written simply as

dΦB = dx̄⊕ dx̄⊖ dΦ̂B =
1

s
dp̄2 dȳ dΦ̂B, (3.1)

where dΦ̂B is the Lorentz invariant phase space for the partonic 2 → N process and s the

hadronic centre-of-mass energy. We refer to the variables ΦB =
{
p̄2, ȳ, Φ̂B

}
as the Born

variables, where Φ̂B parametrizes the N -body phase space in the partonic centre-of-mass

frame; for the simple case of a decaying scalar, like the Higgs boson, the matrix element

does not depend on Φ̂B, which could therefore be trivially integrated out at this point.

The NLO real emission corrections to the leading-order process consist of 2 → N + 1

processes, p⊕ + p⊖ → p1 + . . . + pN + k, where we denote the momenta of the same N

particles produced in the leading-order process pi and that of the extra colour charged

parton by k. For these processes we introduce the Mandelstam variables ŝ, t̂, û and the

related radiative variables ΦR = {x, y}, which parametrize the extra emission:

ŝ = (p⊕ + p⊖)2 =
p2

x
, (3.2a)

t̂ = (p⊕ − k)2 = −1

2

p2

x
(1 − x) (1 − y) , (3.2b)

û = (p⊖ − k)2 = −1

2

p2

x
(1 − x) (1 + y) , (3.2c)

where p =
∑

pi. We do not explicitly include an azimuthal angle for the gluon about the

z axis, instead it is used to define the +y axis relative to which the azimuthal angle of

the other final-state particles is measured; ultimately all generated events are randomly

rotated about the z axis in the hadronic centre-of-mass frame.

To perform a simultaneous Monte Carlo sampling of the N - and N+1-body phase

spaces one has to specify the integration variables. We choose two of these to be the mass

and rapidity of the system of colourless particles, therefore p̄2 ≡ p2 and ȳ ≡ y, where y

is the rapidity of p.2 An immediate consequence of this partial mapping of the N and

N+1 body phase spaces is that the momentum fractions, x©, of the incident partons in

the 2 → N + 1 processes are related to those of the 2 → N process by

x⊕ =
x̄⊕√

x

√
2 − (1 − x) (1 − y)

2 − (1 − x) (1 + y)
, x⊖ =

x̄⊖√
x

√
2 − (1 − x) (1 + y)

2 − (1 − x) (1 − y)
, (3.3)

where, by definition, p© = x©P©.

2Henceforth we will always refer to these variables as p2 and y.
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Since we restrict ourselves to processes for which the NLO corrections contain at most

soft and initial-state collinear singularities, the product of t̂ û with the squared real emission

matrix elements will be finite throughout the radiative phase space. Working in conven-

tional dimensional regularization, in n = 4 − 2ǫ space-time dimensions, we are then able

to perform an expansion in ǫ of the N+1-body phase-space measure, dΦN+1, using similar

manipulations to those in refs. [58–61], giving

dΦN+1 = dΦB dΦR
p2

(4π)2 x2

(
1

p2

)ǫ

cΓ J (x, y) , (3.4)

where here the Born variables Φ̂B specify a configuration in the rest frame of p rather than

p̄. The function J (x, y) is given by

J (x, y) = [S δ (1 − x) + C (x) (2δ (1 + y) + 2δ (1 − y)) + H (x, y)]
t̂ û

ŝ2
,

where

S =
1

ǫ2
− π2

6
− 4

ǫ
ln η + 8 ln2 η , (3.5a)

C (x) = −1

ǫ

1

(1 − x)ρ

− 1

(1 − x)ρ
ln x + 2

(
ln (1 − x)

1 − x

)

ρ

, (3.5b)

H (x, y) =
2

(1 − x)ρ

[(
1

1 + y

)

+

+

(
1

1 − y

)

+

]
, (3.5c)

with ρ =
(∑

i

√
p2

i

)2

/ŝ and η =
√

1 − ρ. The constant cΓ, which appears due to the use

of dimensional regularization, is given by

cΓ = (4π)ǫ Γ (1 − ǫ)2 Γ (1 + ǫ)

Γ (1 − 2ǫ)
,

and the ρ-distributions are defined by the relation
∫ 1

ρ

dxh (x)

(
lnn (1 − x)

1 − x

)

ρ

=

∫ 1

ρ

dx (h (x) − h (1))
lnn (1 − x)

1 − x
,

for any sufficiently regular test function h (x). The radiative phase space can be

parametrized in terms of the radiative variables as

dΦR = 1
2
dy dx . (3.6)

The precise definition of Φ̂B in the context of the radiative event is, in general, given by

a series of boosts and rotations, denoted by B, which embed the N -particle, leading-order

final state in the N+1-particle radiative events. To assemble a radiative event configuration

we first construct the N final-state momenta of the leading-order configuration according to

the definition of Φ̂B and, separately, the momenta of the incident partons and the radiated

parton k in the hadronic centre-of-mass frame:

p⊕ =
1

2

√
s (x⊕, 0, 0,+x⊕) , p = (ET cosh y, 0, −pT , ET sinh y) , (3.7)

p⊖ =
1

2

√
s (x⊖, 0, 0,−x⊖) , k = (pT cosh yk, 0, pT , pT sinh yk) , (3.8)

– 7 –
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where ET =
√

p2
T + p2, and

p2
T =

p2

x

1

4

(
1 − y2

)
(1 − x)2 , yk = y +

1

2
ln

(
1 + y

1 − y

)
+

1

2
ln

(
2 − (1 − x) (1 − y)

2 − (1 − x) (1 + y)

)
.

(3.9)

To embed the N final-state particles of the leading-order process in the radiative event we

first transform them with a longitudinal boost, By, taking us to their rest frame. Should

we wish to adhere to the conventions in refs. [58–61], we then apply a rotation to them, R,

defined such that, ultimately, B will preserve the direction of p⊕, i.e. with p⊕ defining the

+z axis in the p rest frame, and also with the transverse momentum of k defining the y

axis. However, for the simple case at hand, no such rotation is necessary since the Higgs

boson decays isotropically in its rest frame.3 A further transverse boost, BT , parallel with

the y axis, is then carried out, where B
−1
T is a transformation from the lab to the frame

in which p has no transverse component. Finally, the inverse boost B
−1
y is applied to the

N particles, which clearly returns them to a frame where their total rapidity is y = ȳ.

Altogether the embedding boost B, to be applied to the leading-order final-state momenta,

is given as

B = B
−1
y BT R By , (3.10)

which, combined with p⊕, p⊖ and k in eqs. (3.7), (3.8), completely specifies the radiative

kinematics.

3.2 Differential cross section for a + b → n

In this section we restrict ourselves to discussing the general form of the NLO differential

cross section for processes of the type a+ b → i1 + . . .+ iN , where n =
∑

j ij are colourless

particles, which we collectively refer to as neutrals. In section 3.3 we give the squared matrix

elements for g + g → H which were ultimately inserted in these formulae. We reiterate

that analogous Higgs-strahlung ingredients are identical to those in ref. [32] modulo the

substitution of the q + q̄ → l + l̄ leading-order matrix element with that of a given Higgs-

strahlung process.

We define the combined incident flux of partons of type a from hadron A, and partons

of type b from hadron B, with respective momentum fractions x⊕ and x⊖, at a scale µ2, as

Lab (x⊕, x⊖) = fA
a

(
x⊕, µ2

)
fB

b

(
x⊖, µ2

)
, (3.11)

where f I
i

(
xi, µ

2
)

are the relevant parton distribution functions (PDFs). To obtain the

differential cross section for a real emission process a + b → n + c, we simply multiply the

relevant squared matrix element by the phase-space measure in (eq. (3.4)), Lab and the

flux factor 1/2ŝ :

dσN+1
ab =

1

2ŝ
MN+1

ab (p⊕, p⊖) Lab (x⊕, x⊖) dΦN+1. (3.12)

3As previously noted, the Higgs-strahlung process was simulated in a special way using the Kleiss trick

as described in [32].
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In general each real emission process makes three contributions to the NLO differential

cross section, one for each term in the phase-space measure eq. (3.5): a soft contribution

dσS0

ab proportional to δ (1 − x), collinear contributions dσC0±
ab proportional to δ (1 ± y), and

a finite, hard, contribution dσH
ab proportional to H (x, y). The subscript 0 in dσS0

ab and

dσC0©

ab reflects the fact that they are bare, divergent, quantities.

For leading-order processes of the type a+ b → n the two initial-state partons must be

either a pair of gluons or a quark and an antiquark. The squared matrix elements for the

real emission corrections to this process, in which a gluon is emitted from an initial-state

parton, a + b → n + g, factorize in the limit that the gluon is soft (x → 1), according to

lim
x→1

MN+1
ab (p⊕, p⊖) = 8παSµ2ǫ 1

p2
2Cab

ŝ2

t̂ û
MN

ab (p⊕, p⊖) . (3.13)

The colour factor Cab is equal to CA if a and b are gluons, and CF if a is a quark and b is

an antiquark or vice versa. The real emission processes a + b → n + g are the only ones

contributing to the cross section in the limit x → 1, all other real emission matrix elements

are finite in this limit, hence the product of t̂ û with the squared matrix element vanishes

there. Hence, the soft contribution to the NLO differential cross section is

dσS0

ab =
αScΓ

2π

(
µ2

p2

)ǫ

Cab

(
2

ǫ2
− π2

3
− 8

ǫ
ln η + 16 ln2 η

)
B (ΦB) dΦB , (3.14)

where B (ΦB) is the differential cross section for the leading-order process

dσB
ab = B (ΦB) dΦB , B (ΦB) =

1

2p2
MN

ab (p̄⊕, p̄⊖)Lab (x̄⊕, x̄⊖) . (3.15)

For an arbitrary process in which an initial-state parton a, with momentum p⊕,

branches to produce a collinear time-like daughter parton with momentum k = (1 − x) p⊕
and its space-like sister parton ãc, with momentum xp⊕, the squared matrix element fac-

torizes according to [62]

lim
y→+1

MN+1
ab (p⊕, p⊖) =

1

p2

ŝ2

t̂ û
8παSµ2ǫ (1 − x) P̂a eac (x ; ǫ) MN

ab (xp⊕, p⊖) , (3.16)

where we explicitly show the dependence of the N and N+1 parton squared matrix elements

on the incident parton momenta. Replacing xp© ↔ p©, a → b in the splitting function we

obtain the analogous formula for the case that c is emitted collinear to b (y → −1). Using

this factorization of the matrix element, the collinear contributions to the real emission

cross section, arising from initial-state radiation, are seen to have the general form,

dσC0©

ab = dσS C©

ab + dσC©

ab − dσCT©

ab ,

dσS C©

ab =
αScΓ

2π

(
µ2

p2

)ǫ

C
i eic

(
p

i eic
+ 4 ln η

)(1

ǫ
+ ln

(
p2

µ2

))
B (ΦB) dΦB,

dσC©

ab =
αS

2π
C©

i eic
(x) B© (ΦB) L̂©

ab (x⊕, x⊖)
1

x
dΦB dx, (3.17)

C©

i eic
(x) =

[
1

(1 − x)ρ
ln

(
p2

µ2x

)
+ 2

(
ln (1 − x)

1 − x

)

ρ

]
(1 − x) P̂

i eic
(x) − P̂ ǫ

i eic
(x) ,

dσCT©

ab =
1

ǭ

αS

2π
P

i eic
(x) B© (ΦB) L̂©

ab (x⊕, x⊖)
1

x
dΦB dx,
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where i = a in the case that parton a splits to produce parton c, and i = b for the case

that parton b branches to produce c. P̂
i eic

(x; ǫ) and P
i eic

(x) are the bare and regularized

Altarelli-Parisi kernels given in appendix A; C
i eic

p
i eic

is equal to the coefficient of the

δ (1 − x) term in the latter, for the case ρ = 0. The B© and L̂© functions are related to

the leading-order differential cross section and parton flux:

B⊕ (ΦB) =
1

2p2
MN

ab (xp⊕, p⊖)Lab (x̄⊕, x̄⊖) , L̂⊕
ab (x⊕, x⊖) =

Lab

( x̄⊕

x
, x̄⊖

)

Lab (x̄⊕, x̄⊖)
,

B⊖ (ΦB) =
1

2p2
MN

ab (p⊕, xp⊖)Lab (x̄⊕, x̄⊖) , L̂⊖
ab (x⊕, x⊖) =

Lab

(
x̄⊕, x̄⊖

x

)

Lab (x̄⊕, x̄⊖)
.

(3.18)

In the MS scheme each collinear singular dσCT©

ab term in the cross section is exactly

compensated for by an additive collinear counter term identical to it (hence the CT label-

ing). This amounts to absorbing the divergence in the PDFs, renormalizing them, hence

we now omit them. The only remaining divergences are soft and collinear terms dσS C©

ab ,

which we absorb in the soft contribution to the cross section dσS0

ab .

Absorbing the soft and collinear terms dσS C©

ab in the soft contribution to the cross

section eq. (3.14), redefines it as

dσS0

ab = S0 B (ΦB) dΦB , (3.19)

where

S0 =
αScΓ

2π

(
µ2

p2

)ǫ

Cab

[
2

ǫ2
+

2

ǫ
pa fag + ln

(
p2

µ2

)(
2pa fag + 8 ln η

)
+ 16 ln2 η − π2

3

]
. (3.20)

One must consider also the contribution of virtual corrections to the leading-order

process as well as the real corrections above. Again, for a + b → n processes, these have a

simple form (see e.g. ref. [29])

lim
x→1

MN V
ab (p̄⊕, p̄⊖) = V0 MN

ab (p̄⊕, p̄⊖) (3.21)

with

V0 =
αScΓ

2π

(
µ2

p2

)ǫ

Cab

[
− 2

ǫ2
− 2

ǫ
pa fag −

π2

3

]
+ M̂N Vreg

ab (p̄⊕, p̄⊖) , (3.22)

where M̂N Vreg

ab is the remainder of the virtual correction, regular as ǫ → 0, divided by the

leading-order squared matrix element,

M̂N Vreg

ab (p̄⊕, p̄⊖) =
MN Vreg

ab (p̄⊕, p̄⊖)

MN
ab (p̄⊕, p̄⊖)

. (3.23)

The poles in ǫ in V0 will exactly cancel those in S0 making the differential cross section

finite for ǫ → 0.

The cross section for the a + b → n leading-order process, combined with the virtual

corrections and a + b → n + g real emission corrections, may then be written as

dσab = B (ΦB) dΦB + V (ΦB) dΦB + Rab (ΦB,ΦR) dΦB dΦR, (3.24)
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where V (ΦB) results from the combination of the soft and virtual corrections to the cross

section (eqs. (3.19), (3.20)),

V (ΦB) = V B (ΦB) , V = S0 + V0|ǫ=0 , (3.25)

and R (ΦB ,ΦR) results from the remaining collinear and hard real emission corrections,

Rab (ΦB,ΦR) =
αS

2π

1

x
Rab L̂ab (x⊕, x⊖) B (ΦB) ,

Rab = 2 C⊕
a eac

(x) δ (1 − y) + 2 C⊖

b ebc
(x) δ (1 + y) + Hab , (3.26)

Hab =
x t̂ û

ŝ

1

8παS

MN+1
ab (p⊕, p⊖)

MN
ab (p̄⊕, p̄⊖)

H (x, y) .

Note that in writing eq. (3.24) we have tacitly equated MN (xp⊕, p⊖) = MN (p⊕, xp⊖) =

MN (p̄⊕, p̄⊖) in the collinear term. This is possible due to our defining p2 = p̄2 and y = ȳ

in section. 3.1.

The remaining contributions to the full NLO differential cross section are due to the

production of n via new channels. For q + q̄ → n processes we add contributions arising

from the q + g → n + q channel,

Rqg (ΦB ,ΦR) =
αS

2π

1

x
Rqg L̂qg (x⊕, x⊖) B (ΦB) , (3.27)

Rqg = 2 Cgqδ (1 + y) + Hqg ,

Hqg =
x t̂ û

ŝ

1

8παS

MN+1
qg (p⊕, p⊖)

MN
ab (p̄⊕, p̄⊖)

H (x, y) ,

and also a set of terms due to the q̄ + g → n + q̄ channel, identical up to the replacement

q → q̄ on all terms with the exception of Cgq. For the g + g → n process we add a

contribution from g + q → n + q, for which Rgq has the same form as eq. (3.27), modulo

interchanging the subscripts qg ↔ gq, and a further contribution from the g + q̄ → n + q̄

process, derived from the former by replacing q → q̄ on all terms but Cqg.

3.3 g + g → H matrix elements

The squared, spin and colour averaged, leading-order matrix element for the g + g → H

process is given by

MN
gg (p̄⊕, p̄⊖) = MN

gg =
N p4

576π (1 − ǫ)
, (3.28)

where N =
α2

S
µ2ǫ

πv2 , with v the vacuum expectation value of the Higgs field and the scale

µ emerging from the use of conventional dimensional regularization. The real emission

radiative corrections consist of three processes: g + g → H + g; q + g → H + q; and

q + q̄ → H + g. As noted above, the singular, soft and/or collinear, limits of the matrix

elements, associated to the ǫ poles in dΦN+1, are universal, therefore a full calculation of

the matrix elements is only needed to multiply the H (x, y) term in dΦN+1. Since the term
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proportional to H (x, y) contains no poles in ǫ, the full calculation of the squared matrix

elements can be carried out in four dimensions, giving,

MN+1
gg = 8παS MN

gg

3

p4

1

ŝt̂û

[
p8 + ŝ4 + t̂4 + û4

]
, MN+1

gq = 8παS MN
gg

−4

3p4

1

û

[
ŝ2 + t̂2

]
,

(3.29)

MN+1
qq̄ = 8παS MN

gg

32

9p4

1

ŝ

[
û2 + t̂2

]
, MN+1

gq̄ = MN+1
gq .

The squared matrix element MN+1
qg can be obtained from MN+1

gq by crossing symmetry

simply by interchanging û ↔ t̂.

The O (αS) virtual corrections to the g + g → H process consist of purely gluonic

swordfish and triangle vertex corrections, as well as a UV counter term. At NLO these

corrections contribute to the cross section through their interference with the leading-order

amplitude, their form is precisely that in eq. (3.22) with,

MV reg
gg =

αS

2π
CA

[
11

3
+

4

3
π2 − 4πb0

CA
ln

(
p2

µ2
R

)]
MB

gg , (3.30)

where µR is the renormalization scale. When used with the general expressions in sec-

tion 3.2, these are all the ingredients required to write down the B (ΦB) function and the

modified Sudakov form factors for this process (eqs. (2.2), (2.3)).

4 Implementation

4.1 Generation of the leading-order configuration

The first phase of the simulation involves generating a leading-order configuration by sam-

pling the B (ΦB) function (see section 2, eq. (2.2)), which is the NLO differential cross

section integrated over the radiative variables,

B (ΦB) = B (ΦB)

[
1 + V +

∑

ab

∫
dΦR

αS

2π

1

x
Rab L̂ab (x⊕, x⊖)

]
. (4.1)

Here the summation runs over all real emission processes a+b → n+c contributing at NLO.

Since the leading-order process is factorized inside the real emission terms Rab, the B (ΦB)

distribution can be generated efficiently by just reweighting the leading-order cross section.

The dependency of the x integration limits on the y radiative variable, coupled with

the definitions of the ρ and plus distributions, is a significant obstacle to the numerical

implementation. We may obtain fixed integration limits by a simple change of variables

x → x̃, where x̃ is defined through the relation

x (x̃, y) = x̄ (y) + η̄ (y)2 x̃ , η̄ (y) =
√

1 − x̄ (y). (4.2)

Care must be taken in implementing these changes of variables in the NLO differential cross

section, particularly with regard to the plus and ρ distributions. When the transformation

is complete only plus distributions remain since, unlike x, x̃ extends over the range [0, 1] for
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all y. Numerical implementation of the B (ΦB) distribution requires all plus distributions

be replaced by regular functions; due to the change of variables in eq. (4.2) this is now

trivial since all plus distributions are to be integrated over exactly the domains specified

in their definition 0 ≤ x̃ ≤ 1.

After the change of variables, the generation of the N -body configurations is technically

carried out in the same way as in ref. [32]: N -body configurations are first generated using

the corresponding leading-order Herwig++ simulation, after which they are reweighted

and retained with a probability proportional to the integrand of eq. (4.1), which is sampled

using a VEGAS based algorithm [63].

4.2 Generation of the hardest emission

Given an N -body configuration generated according to B (ΦB), we proceed to generate the

largest transverse momentum emission according to the modified Sudakov form factor in

eq. (2.3). The exponent in the modified Sudakov form factor consists of an integral over a

sum of different contributions, one for each channel, a + b → n + c, given by

Wab (ΦR,ΦB) =
R̂ab (ΦB,ΦR)

B (ΦB)
=

αS

2π

1

x
Ĥab L̂ab (x⊕, x⊖) , (4.3)

where Ĥab is equal to Hab with the plus and ρ regularization prescriptions omitted.

Instead of generating the hardest emission in terms of ΦR = {x, y} we find it more

convenient to make a change of variables to Φ′
R = {pT , yk}, defined in eq. (3.9). Making

this change of variables removes the complicated θ-function in eq. (2.3), replacing it by a

lower bound on the integration over pT :

∆
R̂

(pT ) = exp

(
−
∫ pTmax

pT

dΦR

∑

ab

Wab (ΦR,ΦB)

)
, (4.4)

where the upper bound, pTmax
, is due to the usual basic phase-space considerations. The

distribution of the transformed radiative variables arising from ∆
R̂

(pT ) (eq. (2.3)) is sam-

pled using a veto algorithm [64], in precisely the same way as was done in ref. [32]. If an

emission is generated it is reconstructed from the pT and yk radiative variables according

to eqs. (3.7), (3.8).

When generating the hardest emission we use a factorization scale of the transverse

mass of the Higgs boson or off-shell vector boson, in gluon fusion and Higgs-strahlung

processes, respectively. In both cases we use the pT of the boson as renormalization scale.

This is required to correctly treat the small pT region where the POWHEG results should

agree with the default Herwig++ parton shower.

4.3 Truncated and vetoed parton showers

The Herwig++ shower algorithm [44, 65] works by evolving downward in a variable related

to the angular separation of parton branching products, q̃, starting at a scale determined

by the colour flow and kinematics of the underlying hard scattering process, and ending at

an infrared cut-off, beneath which further emissions are defined to be unresolvable. Each

– 13 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
6

branching is specified by an evolution scale q̃, a light-cone momentum fraction, z, and

an azimuthal angle, φ. The momenta of all particles forming a shower can be uniquely

constructed given the {q̃, z, φ} parameters of each branching. Since the showers from each

parton in a given process evolve independently, from what are initially on-shell particles,

generated according to a matrix element, some reshuffling of these momenta, after the gen-

eration of the parton showers, is required to ensure global energy-momentum conservation.

In order to carry out showering of N+1-body final states associated to the generation

of the hardest emission, we treat the N+1 momenta as having arisen from the showering

of an N -body configuration with the Herwig++ shower. To this end we calculate the

branching parameters {q̃h, zh, φh} for which the shower would reconstruct the N+1-body

system from an initial N -body one. Details of this inverse reshuffling calculation were

given already in [32]. The POWHEG emission is subsequently regenerated in the course of

a single Herwig++ shower as follows:

1. the shower evolves from the default starting scale to q̃h, with the imposition that

any further emissions be flavour conserving and of lower pT than that of the hardest

emission (pTh
), the truncated shower ;

2. the hardest emission is inserted as a set of branching parameters {q̃h, zh, φh};

3. the evolution continues down to the cut-off scale, vetoing any emissions whose trans-

verse momentum exceeds pTh
, the vetoed shower.

Should the hardest emission occur in an area of phase space that the shower cannot popu-

late, i.e. the wide angle/high pT dead zone (section 5.2.1), subsequent emissions will have

sufficient resolving power to see the widely separated emitters individually. It follows that

no truncated shower is then required, since this models coherent, large angle emission from

more collimated configurations of partons, and so we proceed directly to the vetoed shower.

5 Results

In this section we present predictions from our POWHEG simulations of the g+g → H and

q + q̄ → V + H processes within the Herwig++ event generator. By comparing our results

to other predictions, based on independent calculations and methods, we aim to validate

these realisations of the formalism.

In section 5.1 we seek to check the calculation and implementation of the POWHEG

NLO differential cross section and B (ΦB) functions, eqs. (2.1)-(2.2), we thereby check the

NLO accuracy of the calculation and in particular the generation of the Born variables

(section 4.1). Technically this is the most delicate part of the simulation, requiring a

full calculation and numerical implementation of the NLO differential cross section. We

compare our results to the NLO parton level Monte Carlo program MCFM [47] to this end.

In section 5.2 we move to focus on distributions sensitive to the generation of the hard-

est emission (section 4.2) and the subsequent merging with the shower algorithm. Here

we compare our results to three different approaches: the bare angular-ordered parton

shower, the parton shower including matrix element corrections and also MC@NLO. While
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MC@NLO consistently combines NLO calculations with the HERWIG parton shower, ma-

trix element corrections work to adjust the distribution of the hardest emission from the

Herwig++ parton shower to be equal to that of the real part of the NLO contribution.

Matrix element corrections also serve to populate an area of the real emission phase space

which the shower cannot ordinarily reach, the so-called dead-zone, which we describe fully

in section 5.2. Since the effects of the NLO contributions on the normalisation of the results

are examined in detail in section 5.1 and, moreover, the predictions from the shower, with

and without matrix element corrections, have leading-order normalisations, in section 5.2

we concentrate on the shapes of these distributions.

Note that we use the notation O (αn
S) to denote terms of order αn

S relative to the

leading order contribution.

5.1 POWHEG differential cross sections and B (ΦB)

In order to check the calculation of the POWHEG differential cross section and B (ΦB)

functions, eqs. (2.1)-(2.2), total cross sections and differential distributions were compared

between our POWHEG implementation and the parton level NLO program MCFM [47].

Since MCFM computes the effects of fixed order (NLO) corrections to the processes in

question, these comparisons are performed prior to any showering of the POWHEG NLO

configurations by Herwig++.

In carrying out these comparisons both Herwig++ and MCFM were run using the

MRST2001 NLO [66] parton distribution set via the LHAPDF interface [67]. A fixed,

constant, factorization and renormalization scale of 100 GeV was used, in order to eliminate

small variations in the treatment of the running coupling and PDF evolution as a possible

source of discrepancy. Also, for this part of the validation, we have assumed the Higgs boson

mass to be 115 GeV. In all cases the total cross sections from MCFM and our POWHEG

implementation agreed to within 0.5 %.

The gluon fusion process is rather simple in view of the fact that the scalar Higgs boson

decays isotropically in its rest frame. Consequently the only non-trivial distributions to

check are the mass and rapidity of the Higgs boson. These distributions are plotted for

the process4 gg → H → τ+τ− in figure 1 and everywhere exhibit a high level of agreement

with MCFM.

The Higgs-strahlung process is more involved than the gluon fusion process due to

the intermediate particle having spin-1 and due to our re-using the method in our earlier

POWHEG work, employing the Kleiss trick [45, 46] to generate the NLO corrections in-

dependently of the details of the decay of the initially off-shell vector boson. Therefore,

to check the correctness of this method, one must look closely at the distributions of the

final-state particles, particularly, on account of propagating spin correlation effects, the

vector boson and its decay products.

The variety of Higgs-strahlung processes which can be simulated by MCFM is limited,

unlike Herwig++, hence we opted to carry out the Higgs-strahlung comparisons using the

following processes: qq̄ → HW+ → e+νebb̄, qq̄ → HW− → e−ν̄ebb̄, qq̄ → HZ → e+e−bb̄.

4MCFM does not implement the gg → H → γγ process.
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Figure 1. Comparisons of the POWHEG implementation in Herwig++ and the NLO parton level

code MCFM [47], for the Higgs boson rapidity (yH) and mass (mH) distributions in the process

g g → H → τ+τ−. Results on the left are obtained for pp̄ collisions at the Tevatron (
√

s = 1.96 TeV)

while those on the right are for LHC pp collisions (
√

s = 14 TeV).

In figure 2 we show the mass of the initial off-shell vector boson, one of the Born variables

for this process, for which there is very good agreement between our POWHEG result and

that of MCFM. In figures 2–6, we show a number of distributions with sensitivity to the

details of the decay of the vector boson, specifically, the polar angle of the lepton produced

by the decaying, resonant, vector boson in its rest frame, the pseudorapidity of the final-

state lepton, as well as the rapidity and transverse momentum of the resonant vector boson

decaying to leptons. In all cases the agreement between our code and MCFM is very good.

5.2 Hardest emission generation and showering

In this section we focus on the distributions most sensitive to the generation of the hardest

emission (section 4.2) and any further radiation obtained due to merging with the shower

algorithm (sections 2, 4.3). In particular we study the pT spectra of the Higgs boson

in the gluon fusion process and the colourless vector boson plus Higgs boson system in
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Figure 2. Mass of the off-shell virtual vector boson in qq̄ → HZ and qq̄ → HW− processes, in

the left and right-hand plots respectively. The qq̄ → HZ predictions are for 1960GeV, Tevatron,

proton-antiproton collisions, while the qq̄ → HW− predictions are for 14TeV, LHC, proton-proton

collisions. This mass is one of the so-called Born variables in the NLO differential cross section

(see section 3.1 and ref. [32]).

Higgs-strahlung processes. The distributions of the rapidity difference between the leading,

highest pT , jet and the produced colour neutral systems, yjet−yH and yjet−yVH, are given

special attention, particularly in view of the differences noted in previous works on the

POWHEG formalism, arising between it and MC@NLO [28, 33, 41].

Since we generate the hardest emission directly in terms of pT it is clear that the

pT spectra are a direct test of this part of the work. The relevance of the yjet − yH and

yjet − yVH distributions to these investigations is not immediately obvious. However, the

yjet − yH and yjet − yVH variables, for one emission, can be expressed purely in terms of

the radiative variables x and y, they are in fact both equal to yk − y as given by eq. (3.9),

hence they are also an ideal probe of the hardest emission generation. In order to gain

some physical insight into what this variable really means, we note that in the limit that

the angle between the radiated parton and colliding beam partons tends to 90o, in the

partonic centre-of-mass frame, eq. (3.9) approximates to

yk − y = − 2

1 + x

(
θ − π

2

)
, (5.1)

where we remind the reader that θ is the angle between the emitted parton and the p⊕
parton in that frame. Furthermore, from eq. (3.9) one can see that yk − y is maximised

when the radiated parton is anticollinear to p⊕ and minimised when it is collinear to p⊕.

Put simply, the central region of the yk−y distribution is populated by wide angle radiation

while the tails are due to collinear radiation.

The jets are defined using the longitutinal invariant kT algorithm [68] with an angular

measure ∆R =
√

∆η2 + ∆φ2, where ∆η and ∆φ are the pseudorapidity and azimuthal

angle differences between two particles respectively, and the E recomination scheme, as

implemented in the KtJet package [69].
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Higgs-strahlung processes. The uppermost plots concern the qq̄ → HW− process and the lower

plots relate to the qq̄ → HZ process. For each process we have displayed the results obtained

at the Tevatron on the left and the LHC on the right. The leading-order (LO) predictions of

Herwig++ and MCFM [47] are shown as dashed lines while solid lines represent the corresponding

NLO predictions. This is a very important test of the correctness of the Kleiss trick, which we have

used to generate the NLO corrections independently of the generation of the LO process [32].

In studying the Higgs-strahlung process we shall compare our results to three different

approaches, namely, the bare angular-ordered parton shower in Herwig++, the Herwig++

parton shower including matrix element corrections and also MC@NLO. In the case of the

gluon fusion process we compare to a further fourth prediction which is given by modifying

the hard component of the matrix element corrections in Herwig++.

5.2.1 The dead zone

In order to better understand the predictions from the Herwig++ shower, with and without

matrix element corrections, and also those of MC@NLO, it will help to understand the phase

space available for the first emission in the shower approach.
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Figure 4. The pseudorapidity of the electron produced by the decaying vector boson, in

qq̄ → HW+ (left) and qq̄ → HZ (right) Higgs-strahlung processes, from the POWHEG imple-

mentation and also MCFM. As in figure 3 the predictions for the Tevatron are given on the left

(pp̄,
√

s = 1.96 TeV) and for the LHC on the right (pp,
√

s = 14 TeV). As well as the distribution

of the lepton polar angle, this is a critical test of the implementation of the Kleiss trick which

factorizes the generation of the LO and NLO calculations [32]. It shows that all spin correlations

have been correctly propagated through to the vector boson decay products.

Figure 5. The rapidity distributions of the resonant vector boson in the Higgs-strahlung pro-

cesses, obtained with MCFM and the Herwig++ POWHEG implementation. The left-hand plot was

obtained considering the qq̄ → HW− process while the right-hand plot relates to the qq̄ → HZ

process. As with the previous figures, on the left-hand side we show predictions for the Tevatron

and, on the right, predictions for the LHC. This is another fundamental test of the functioning of

the Kleiss trick, since, in using this trick, the generation of the radiative variables is completely

independent of the generation of the decay of the virtual vector boson viz. the Higgs boson and the

resonant vector boson.
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Figure 6. The transverse momentum of the Z boson in Higgs-strahlung events at the Tevatron,

compared to MCFM. On the right hand side we show an analogous comparison for the LHC. This

distribution is a further confirmation that the Kleiss trick is working correctly, since it is sensitive

to the details of the final state and not simply the production of the initial off-shell vector boson.
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Herwig dead zone overlap
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Figure 7. The full radiative phase space is given by the black rectangle in the x, y plane, bounding

the plots on the right. The minimum kinematically allowed value of x is shown as 1/s̄max = p2/s.

The region into which two colour connected partons a and b cannot emit radiation, according to the

Herwig++ and HERWIG shower algorithms, is marked ‘dead zone’ on the left- and right-hand plots

respectively. In both algorithms, radiation into this dead zone is only possible with the help of a

hard matrix element correction. Unlike Herwig++, in the case of the HERWIG algorithm there is a

region of phase space which is double counted by the showering from a and b marked ‘overlap’; this

double counting is ultimately corrected for by a veto procedure. These plots correspond specifically

to the case of a 115GeV Higgs boson being produced via the gluon fusion process at LHC energies,

although their form does not change significantly for the other processes we consider.

In general, given a leading-order configuration, one must first specify starting scales for

each parton to evolve down from. The guiding principle behind the choice of starting scales

in the HERWIG and Herwig++ angular-ordered shower algorithms is as follows: given two

colour connected shower progenitor partons a and b, progenitor a cannot emit any soft

radiation into the hemisphere defined by the direction of progenitor b, in the rest frame of
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a and b, and vice-versa. This avoids any double counting of the phase space.5 In other

words, the starting scales are fixed by constraining that, in the limit of soft emissions, the

two jet regions, of the first emission phase space (those which either progenitor can emit

into) meet smoothly and do not overlap. If one then plots, in the full phase space, the

contours to which these values of the evolution variables correspond to, one finds three

regions: a jet region into which progenitor a can emit, a jet region into which progenitor

b can emit and a further region into which neither can emit, the so-called dead zone. We

show exactly these phase-space regions for the HERWIG [70, 71] and Herwig++ [44, 65]

algorithms in figure 7, taking the case of gluon fusion at LHC energies as an example.

At this point we wish to remind the reader that in the distributions of yjet − yH and

yjet − yHV which follow, the region around zero corresponds to the emission of the jet at

right angles to the colliding partons in the partonic centre of mass frame (eq. (5.1)). This

in turn corresponds to the region either side of the line y = 0 in the phase map shown in

figure 7, along which the volume of the dead zone is maximised.

In figure 8 we superimpose, on the x, y phase-space map of the gluon fusion process,

four contours corresponding to constant values of pT : 10 GeV, 40 GeV, 80 GeV and mH.

This was done for the three scenarios which we study using the Monte Carlo predictions,

specifically, a Higgs boson mass of 160 GeV at Tevatron energies (1960 GeV), a Higgs boson

mass of 115 at LHC energies (14 TeV) and finally a Higgs boson mass of 300 GeV, also at

LHC energies. In doing this we see that restricting the phase space to regions with higher

and higher pT leads to the expected result, namely, that the dead zone begins to fill the

allowed region.

For the three scenarios we consider, figure 8 shows that a cut of pT >80 GeV already

leads to a great reduction in the area of phase space populated by the shower, while for

pT > mH the allowed region is fully contained within the dead zone. Similar plots are

obtained for the Higgs-strahlung process by simply replacing the Higgs boson mass used in

the calculation of the gluon fusion phase space, by the typical mass of the colourless vector

boson plus Higgs boson system (figure 2 shows this to be in the range 200-300 GeV). The

maps in figures 7 and 8 are key to a good understanding of the results in sections 5.2.2, 5.2.3.

As noted earlier, the dead zone of phase space, into which the shower cannot emit, can

be filled with the aid of a hard matrix element correction. This involves populating that

region according to the single real emission matrix element squared [44, 72]. In principle

this is a simple procedure, since the dead zone does not run into any singular regions of

phase space:6 given an underlying N -body configuration one selects whether an emission

into the dead zone occurs according to the conditional probability,

PHW
dead (ΦB) = 1 − exp

[
−
∫

dead

dΦR
R̂ (ΦB ,ΦR)

B (ΦB)

]
, (5.2)

5In practice, in the case of HERWIG, there is a small amount of overlap in the phase space allotted to

each shower progenitor, although the algorithm later corrects for this by a vetoing procedure.
6Although the ‘throat’ of the dead zone in Herwig++ touches the soft boundary, it does so only in a

vanishing region of the dead zone phase space, which is anyway cut off by the gluon mass regulator used in

the shower.
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Figure 8. Radiative phase space in the x, y plane, as in figure 7 but with contours corresponding

to constant values of pT superimposed in green, from lightest to darkest (right to left) respectively

these are, pT =10GeV, pT =40GeV, pT =80GeV and pT = mH . The region into which the two

shower progenitors cannot emit radiation is again marked ‘dead zone’; for HERWIG this area is

bounded in red while for Herwig++ it lies between the magenta lines. The three plots correspond

to the three scenarios under study in the remainder of the paper: a Higgs boson of mass 160GeV

at the Tevatron, a Higgs boson of mass of 115GeV at the LHC, and a Higgs boson of mass 300GeV

also at the LHC. The area with emissions pT > mH is entirely within the dead zone in all scenarios.

and, if an emission is to be generated, it is distributed according to the single real emission

matrix element squared including PDFs (R (ΦB ,ΦR)). Neglecting terms beyond NLO

accuracy, PHW
dead (ΦB), integrated over the Born variables, gives the fraction of the NLO

cross section which the dead zone would contribute.

In all cases the hard matrix element correction is accompanied by a soft matrix element

correction, which corrects the distribution of the hardest emission in the parton shower

regions so that it is also given by R (ΦB,ΦR). The combination of the soft and hard matrix

element corrections ensures that, to O (αS), the distribution of real radiation is exactly

matched either side of the dead zone boundaries, i.e. any sensitivity on the position of the

dead zone boundary will be at the level of O
(
α2

S

)
terms, which should not be logarithmically

enhanced since the boundary is predominantly in the high pT region.

The same exact matching at O (αS) is true in the MC@NLO program, which feeds

events to the HERWIG parton shower. In this case the generation of the first emission

is done according to the full NLO differential cross section with additional, resummed,

higher order corrections entering in the shower regions of the phase space. Sensitivity to

the dead zone boundary is present in the NLO calculation through the shower subtraction
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terms, which are required to avoid double counting of the NLO contributions through the

subsequent showering with HERWIG. Ultimately, in MC@NLO, one has that the emission

rate in the shower regions is given by the resummed rate in the shower’s Sudakov form

factor, corrected at O (αS), while in the dead zone it is related to the fraction which that

area contributes to the total NLO cross section. This is much like the case of the matrix

element correction procedure and, as with that method, any mis-match between the shower

region and the dead zone should therefore again relate to unenhanced O
(
α2

S

)
terms. We

stress that, unlike the matrix element correction method, the MC@NLO program includes

also exact NLO virtual corrections to the process in the event generation process, giving

full NLO accuracy. However, as we now wish to focus on the shapes of the distributions

sensitive to the effects of real radiation, neglecting the overall normalisation, differences

arising from virtual corrections only enter the results through terms beyond NLO accuracy.

This last point is addressed further at the beginning of section 5.2.2.

As we have already described in sections 2 and 4, the POWHEG method generates the

hardest emission completely independently of the detailed workings of the shower, it may

be considered as being a pT ordered shower in its own right, albeit for a single emission.

Unlike the other methods, POWHEG therefore has no dependence whatsoever on the dead

zone boundary and the way in which it generates the hardest emission generation is the

same throughout the whole phase space.

5.2.2 Gluon fusion

In this subsection we compare our POWHEG simulation against predictions from the bare

angular-ordered parton shower in Herwig++, the Herwig++ parton shower including matrix

element corrections and MC@NLO. We also compare against a further prediction from the

matrix element correction (MEC) procedure, in which we decrease the rate of emission into

the dead zone by unenhanced terms of O
(
α2

S

)
, by changing the denominator in PHW

dead (ΦB)

from B (ΦB) to B (ΦB):

PHW
dead (ΦB) → PNLO

dead (ΦB) =

∫

dead

dΦR
R̂ (ΦB,ΦR)

B (ΦB)
. (5.3)

Whereas integrating PHW
dead (ΦB) over the Born variables gives the fraction of the NLO cross

section contributed by the dead zone neglecting higher order terms, performing the same

integral with PNLO
dead (ΦB) gives this fraction exactly.7 Although it should be obvious to the

reader that this is technically only an alteration at the level of terms beyond NLO accuracy,

we do not wish to give the impression that it is a priori a small change, at least not for

the gluon fusion process (recall figure 1). We expect that this alteration should mean that

the modified MEC predictions should reproduce well the rate at which MC@NLO emits

radiation into the dead zone.

In figure 9 we show the pT spectrum of the Higgs boson and also that of the hardest jet.

One can see that the pT spectra at the Tevatron are less hard than those obtained at the

LHC, as one would expect given the greater centre-of-mass energies of the latter. One also

7For this reason we choose to distinguish the modified probability by the superscript NLO.
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expects that, at the LHC, the larger mass of a 300 GeV Higgs boson would automatically

give rise to it having a harder spectrum than that of a 115 GeV Higgs boson, this is indeed

the case for all five Monte Carlo predictions.

In each of our three phenomenological scenarios we see that the behaviour of the

different simulations is more-or-less the same with respect to one another. The effect of

the radiation dead zone is very clear as a sharp knee in the spectra from the uncorrected

Herwig++ parton shower (black dotted lines), as the transverse momentum approaches the

Higgs boson mass. Only the effects of multiple emission mean that this is not an abrupt

cut off (figure 8). As predicted, turning on the MECs and hence filling the dead zone in

Herwig++, leads to a spectrum in much better agreement with all of the other methods

(black lines). A very slight kink is still visible in this default MEC prediction, which we

already forecast in section 5.2.1 as a mis-match, at O
(
α2

S

)
, across the dead zone boundary.

The modified MEC (green dotted lines) shows a similar trend with respect to the

uncorrected parton shower prediction, although it comes as no surprise that it has a softer

spectrum than the regular MEC, simply because the rate of emission into the dead zone is

reduced by an amount approximately given by the NLO K-factor cf. eqs. (5.2), (5.3). From

our earlier investigations concerning the dead zone one should expect that the difference

in the emission rates in eqs. (5.2) and (5.3) directly manifests itself as the same relative

difference in the upper values of the pT spectra of the Higgs boson and the leading jet.

This is indeed seen to be the case in figure 9, where the unmodified MEC prediction is

around a factor of two higher than the modified one on the right-hand side of each plot.

In all cases the Herwig++ NLO POWHEG prediction (red lines) is seen to be in very

close agreement with the predictions obtained using the normal MEC procedure (black

lines). As we shall discuss more in section 5.3, we attribute this to the fact that the

emission rates for the MEC method and the POWHEG implementation can be expected to

converge to the same value at high pT .

The MC@NLO pT spectra are in general somewhat softer than those of the MEC

procedure and POWHEG NLO prediction, they tend to lie between the prediction obtained

using the modified MEC (green dotted lines) and the Herwig++ POWHEG/default MEC

lines. Good agreement between the MC@NLO and modified MEC predictions can be seen

for the case of a 115 GeV Higgs boson at the LHC, similarly, the agreement in the case of

the Tevatron is good below 200 GeV, however, for a 300 GeV Higgs boson at the LHC the

agreement is not as good as hoped beyond pT ≃ mH. We suggest that these discrepancies

arise from presence of an improvement introduced between versions 3.2 and 3.3 of MC@NLO,

with the aim of improving the description of the Higgs boson pT spectrum [22].

In figures 10 and 11 we show the distribution of the rapidity difference between the

leading jet and the Higgs boson, for increasingly hard cuts on the pT of the jet. Starting

again with the bare parton shower prediction (black dotted lines), for each scenario and each

value of the pT cut on the leading jet, the structure is broadly the same, the distribution

rises from the tails at either side of the plot into a hump before falling again into a very

deep dip in the centre, at yjet − yH = 0.

These volcano formations are a direct manifestation of the radiation dead zone; the

volume of the dead zone is maximised along the direction corresponding to wide angle
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Figure 9. Transverse momentum spectra for the Higgs boson and the leading, highest pT , jet,

obtained using Herwig++ with matrix element corrections (black), Herwig++ without matrix ele-

ment corrections, i.e. the uncorrected parton shower (dotted), MC@NLO (blue) and our POWHEG

simulation inside Herwig++ (red). The green curve is obtained by modifying the hard component

of the matrix element corrections, to decrease the amount of radiation produced in the associated

high pT , wide-angle, dead-zone, by terms beyond next-to-leading-order accuracy. This modification

is discussed further in section 5.3.
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Figure 10. In the left hand column we show distributions of the difference in rapidity between the

leading jet and a Higgs boson of mass 160GeV at the Tevatron, for increasing cuts on the pT of the

leading jet. For a single emission, in the region close to zero, this variable is proportional to the

angle between the emitted parton and the transverse direction in the partonic centre-of-mass frame

(eq. (5.1)). In the right hand column we show the corresponding jet multiplicity distributions. The

black and dotted lines show the predictions obtained using Herwig++ with and without matrix

element corrections, respectively. The blue line shows the prediction from MC@NLO and the red

line is that of our POWHEG simulation in Herwig++. The green line is obtained using a modified

version of the hard matrix element correction, effectively decreasing the amount of radiation that

this method produces in the high pT , dead zone, by terms beyond NLO accuracy (see section 5.3).
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Figure 11. Distributions of the difference in rapidity between the leading jet and the Higgs boson

in the gluon fusion process at the LHC, for increasing cuts on the pT of the leading jet. The series of

plots on the left hand side are obtained for a Higgs boson of mass 115GeV, while those on the right

correspond to a Higgs boson of mass 300GeV. The colour assignment of the various predictions is

described inset, it is the same as for earlier Tevatron predictions in figure 10.

radiation in the partonic centre-of-mass frame, y ≈ 0, θ ≈ π
2

(section 5.2.1, figures 7, 8)

and the yjet−yH variable is proportional to θ − π
2

(section 5.2, eq. (5.1)). The only thing
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which may then be slightly surprising is that the distribution does not in fact go exactly

to zero at yjet − yH = 0, this is simply due to the effects of multiple emissions (the phase

space in figures 7 and 8 is only exact for the case of a single emission).

Looking in more detail at the structure of the uncorrected Herwig++ predictions, we

see that the throat in each of volcano distributions widens as the pT cut on the hardest

jet is increased. This broadening occurs because the dead zone accounts for proportionally

more and more of the smaller/less wide angle regions of the phase space as the pT increases.

This trend of the broadening throat with the hardening of the pT cut is therefore visible

in each of the three scenarios we consider and it will come as no surprise that the same

occurs for the Higgs-strahlung process.

The hard matrix element correction begins to fill in the central throat region by emit-

ting wide angle radiation into the dead zone. Nevertheless, both the modified and unmod-

ified MEC results carry some residual sensitivity to the dead zone boundary, as evidenced

by their inheritance of dips in the central region, dips which follow the same trend as that

set by the uncorrected parton shower, to broaden and deepen as the pT cut on the hardest

jet is increased. We attribute this dip behaviour as being almost entirely due to the mis-

match in the emission rate across the dead zone boundary, which occurs for terms beyond

NLO accuracy, as discussed in section 5.2.1. This conclusion may not appear to hold for

the 115 GeV Higgs boson when the pT cut on the jet reaches 80 GeV. However, in this

plot, the absence of a dip actually reinforces our assertion, as can be seen by consulting

the 80 GeV pT contour in the corresponding phase-space map; this contour shows that the

allowed region for emissions is almost identically in the dead zone, so any matching across

the dead zone boundary and, conversely, any mis-matching, is extremely limited in this

special case.

Having understood how the dead zone is manifest in the rapidity difference plots,

the differences observed between the modified and unmodified MEC methods are rather

unremarkable: since the emission rate of the modified MEC into the dead zone is reduced

by around a factor of two with respect to the unmodified correction, the former emits more

wide angle radiation and so populates the central region of the yjet−yH to a greater extent.

Although the HERWIG program has a slightly different phase-space coverage for its

parton showers (figures 7, 8), they are apparently not so different, particularly away from

the soft region. Considering the region of the phase space allowed by just a 10 GeV pT cut

(figure 8) it is already clear that the coverage by HERWIG and Herwig++ is really very

similar and that it is basically identical by the time the cut reaches 80 GeV. The predictions

of the uncorrected HERWIG shower, which showers the positive and negative unit weight

events fed to it from MC@NLO, will then be very similar to those shown here for Herwig++,

in particular, the volcano structures in the yjet − yH distributions. This being the case,

it is understandable that the MC@NLO distributions (blue lines) also exhibit dips in the

central region, and that the behaviour of these dips with the varying pT cut follows that

of the MEC method; we also note that a number of these results are markedly similar to

those obtained using the modified MEC.

Before discussing the POWHEG results we reiterate that this method is wholly indepen-

dent of the details of the partitioning of phase space in the shower algorithms, it generates
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the NLO emission effectively as a self contained pT ordered parton shower, albeit with

NLO accuracy, and thereby circumvents such issues. Hence, the appearance of a slight dip

in the distributions of yjet − yH cannot be explained in the same way as those seen in the

predictions of the Herwig++ shower, with or without the MECs, nor those of MC@NLO.

The central dip appearing in the POWHEG results alters the height of these distributions,

in all cases, by less than 5%, it is therefore characteristic of the uncertainties typical of

NNLO calculations, and is many times smaller than those seen in the other predictions.

Given the smallness of the effect, its absence in the Tevatron distributions, and also the

fact that it exhibits no discernible response to the changing pT cut, we cannot comment

on its origin.

Finally we note that only the POWHEG predictions clearly exhibit the expected phys-

ical behaviour on increasing the pT cut: that the yjet − yH distribution should become

squeezed toward the central region, as the phase space available for small angle emissions,

which populate the tails, becomes reduced relative to the phase space available for wide

angle emissions. This trend is somewhat obscured in the distributions predicted by the

other methods.

At this point we do not wish to give the impression that the dips exhibited by the

MEC and MC@NLO predictions are incorrect. It is our contention, however, that these

predictions can be consistently explained by ascribing the origin of the dips to a mis-

match at O
(
α2

S

)
in the emission rates either side of the dead zone boundary. Although

the dead zone boundary is an unphysical partition in the phase space, we stress that the

mis-match involves terms beyond the stated accuracy of either method. Looking ahead,

beyond NLO accuracy, it should then be the case that the MEC and MC@NLO approaches

fail to approximate any higher order terms, while the POWHEG method, being independent

of any kind of artificial phase space partitioning, should fare much better.

In figure 10 we also show jet multiplicity distributions associated to each of the Teva-

tron yjet − yH plots. As expected, these plots show, in all cases, that the jet multiplicity

distribution decreases rapidly as the pT cut on the leading jet is increased, with only ∼5%

of events containing a jet once the cut reaches 80 GeV. In the case of the soft pT cut

(pT ¿10 GeV) one can see that the POWHEG approach predicts events with lower multiplic-

ity than the other methods (which broadly agree with one another).

5.2.3 Higgs-strahlung

In figure 12 we compare the transverse momentum spectra of the Higgs boson and W

boson assuming a 160 GeV Higgs boson mass at the Tevatron and Higgs boson masses of

115 GeV and 300 GeV at the LHC. In each case we compare the results obtained using the

uncorrected Herwig++ parton shower, the parton shower with MECs, MC@NLO and our

POWHEG implementation. All four approaches agree remarkably well. The fact that the

uncorrected, leading-order, parton shower prediction agrees so well with the other methods,

which include at least the NLO real emission corrections, indicates that these distributions

are rather insensitive to the emission of additional radiation, therefore one should not

expect to see differences among the more sophisticated approaches.
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On the right of figure 13 we show the rapidity of the leading jet in qq̄ → ZH events.

These rapidity distributions are concentrated more in the central region in the case of the

Tevatron than the LHC. This behaviour can be inferred from the fact that there is more

phase space available for extra radiation at LHC energies. The same line of reasoning also

explains why the rapidity distribution in the case of the 300GeV Higgs boson at the LHC

is also more central than that of the 115 GeV Higgs boson. There is a tendency in all of

the plots for the MC@NLO distributions to contain more events in the tails, conversely,

the POWHEG results show more jets produced in the central region. The predictions from

the uncorrected parton shower and the parton shower with a MEC lie between those of

MC@NLO and POWHEG, with the former being slightly closer to MC@NLO and the latter

closer to POWHEG.

The plots on the left of figure 13 are a more interesting test of our methods, they show

the transverse momentum of the colourless Z -Higgs boson system and also the rapidity of

the hardest jet in the same qq̄ → ZH events. The pT of the vector boson plus Higgs boson

system is generated directly by the Higgs-strahlung POWHEG simulation. As in the case of

the gluon fusion process we see that the POWHEG results and those of the parton shower

including matrix element corrections are essentially the same, and that both are harder

than the corresponding MC@NLO prediction. However, the degree by which the latter

predictions are above those of MC@NLO is significantly reduced with respect to that seen

in the gluon fusion case. We again attribute this to the relative differences in the rate of

emission into the dead zone, in the MEC method this occurs with probability PHW
dead (ΦB)

(eq. (5.2)) while in MC@NLO the analogous probability will be essentially given by the

fraction which the dead zone contributes to the total NLO cross section i.e. PNLO
dead (ΦB)

(eq. (5.3)). Since the denominators in these emission probabilities differ by an amount of

order the NLO K-factor the differences arising in the gluon fusion case should be large

whereas they should be small in the Higgs-strahlung case. It is difficult to see it clearly

at the upper end of these Higgs-strahlung pT spectra but the MC@NLO result is below

that of POWHEG and the MEC methods by roughly 30%, which is compatible with the

enhancement due to the NLO corrections seen in the comparisons with MCFM in e.g.

figure 2.

In figures 14 and 15 we show distributions of the rapidity differences yjet − yZH and

yjet − yWH, for the qq̄ → WH and qq̄ → ZH processes, at the Tevatron and LHC respec-

tively. These plots display the same features and trends as seen in the gluon fusion case. As

before, the uncorrected parton shower predictions give rise to volcano shaped distributions

due to the dead zone in the phase space and increasing the pT cut on the leading jet again

has the effect of broadening the throat, reflecting the fact that the dead zone occupies an

increasingly large fraction of the allowed phase space.

The MEC and MC@NLO methods emit radiation into the dead zone, filling the throat

region in the yjet − yWH and yjet − yZH plots, however, they still exhibit a clear sensitivity

to the dead zone boundary which is manifest as irregularities in the central regions of the

distributions. For the case that the pT cut on the leading jet is soft, pT >10 GeV, the MEC

predictions show a tiny, sharp dip around the centre, while those of MC@NLO show the

formation of a small tower in the same place. This is plainly a mis-match of O
(
α2

S

)
terms
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Figure 12. Transverse momentum spectra for the Higgs boson (left) and the W± boson in qq̄ →
HW± events obtained using Herwig++ with and without matrix element corrections (black and

black dots respectively), MC@NLO (blue) and our POWHEG simulation inside Herwig++ (red).

The first uppermost predictions, for the Tevatron, are obtained assuming a Higgs boson mass of

160GeV. The following four plots are analogous projections for the LHC for Higgs boson masses of

115GeV and 300GeV.

across the phase-space partition. As the pT veto increases the dips in the MEC predictions

tend to deepen and in the case of MC@NLO, the small towers turn to small dips. In all
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Figure 13. On the left we compare predictions for the transverse momentum spectrum of the

colourless final-state system comprised of the Z and Higgs boson (left) in qq̄ → ZH events. From

top to bottom, respectively, these results are obtained for Tevatron energies with a Higgs boson

mass of 160GeV, LHC energies with a Higgs boson mass of 115GeV and LHC energies with a Higgs

boson mass of 300GeV. On the right hand side we show the corresponding distributions for the

rapidity of the leading, highest pT , jet. The colour assignment for the different approaches used is

shown inset, and is the same as that in figure 12.
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cases the POWHEG distributions are smooth, exhibiting no irregular volcanic features, as

expected, furthermore they are more concentrated in the central region than all of the

other predictions, indicating a tendency to emit proportionally more wide angle radiation.

We point out that in all of the MEC and MC@NLO predictions the residual effects of

the phase-space dead zone are felt much less strongly in the case of Higgs-strahlung than

in gluon fusion. These behaviours are less marked for the same reason that the MC@NLO

and POWHEG pT spectra agree better for Higgs-strahlung than for gluon fusion: the fact

that the NLO corrections are substantially smaller for Higgs-strahlung means B (ΦB) is

less different to B (ΦB) and so the O
(
α2

S

)
differences in the rates at which each method

populates the dead zone are greatly reduced, cf. eqs. (5.2), (5.3).

5.3 Emission rates in the dead zone

In this subsection we present an heuristic discussion of the rates with which each approach

emits into the high pT region. In particular we consider the area of phase space correspond-

ing to transverse momenta pT > mn, where mn is the mass of the colourless final-state

system. This region is completely contained within the dead zone and the contribution

which it makes to the cross section is not logarithmically enhanced (section 5.2.1).

From eq. (5.2) it follows that the probability for Herwig++ to generate an emission

with pT > mn is

PHW
mn

(ΦB) =

∫

mn

dΦR1

R̂1 (ΦB,ΦR1
)

B (ΦB)
, (5.4)

where the omitted higher-order terms in the exponential series are negligible, not simply be-

cause they carry higher powers of the coupling constant but also, significantly, because the

contribution to the total cross section from this region is in general very small. In eq. (5.4)

R̂1 (ΦB ,ΦR1
) is, as before, the real single-emission matrix element squared, including flux

factors and PDFs, and ΦB and ΦR1
are the Born and radiative variables parametrising

the two-body phase space. The lower limit on the integral signifies that it extends over

all available phase space above pT > mn. Our adding a subscript ‘1’ to each R, has no

significance here but it will be useful later, in discussing NNLO corrections.

The fraction of MC@NLO events with emissions in this region is given by the corre-

sponding fraction of the NLO cross section

PNLO
mn

(ΦB) =

∫

mn

dΦR1

R̂1 (ΦB ,ΦR1
)

B (ΦB)
. (5.5)

For what follows it will be useful to note that if we expand the denominator in eq. (5.5),

neglecting terms O
(
α3

S

)
and above, we have

PNLO
mn

(ΦB) =

∫

mn

dΦR1

R̂1 (ΦB ,ΦR1
)

B (ΦB)

(
2 − B (ΦB)

B (ΦB)

)
. (5.6)

In POWHEG the Sudakov form factor, ∆
R̂

(pT ) in Eq (2.3), is the probability that

no radiation is emitted from the leading-order partons in evolving from the maximum

kinematically allowed transverse momentum, down to pT . Hence a POWHEG simulation
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Figure 14. In the left-hand column are distributions of the difference in rapidity between the

leading jet and the colourless W−Higgs boson system, in qq̄ → HW± events at the Tevatron,

for increasing cuts on the pT of the jet. For a single emission, the central value yjet − yHW = 0

corresponds to a configuration where the W -Higgs boson and the colliding partons travel at right-

angles in the partonic centre-of-mass frame (eqs. (3.9), (5.1)). In the plots on the right-hand side

we show the corresponding jet multiplicity distributions. The black and dotted lines show the

predictions obtained using Herwig++ with and without matrix element corrections respectively.

The blue line shows the predictions of MC@NLO and the red line corresponds to our POWHEG

simulation inside Herwig++.
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Figure 15. Distributions of the difference in rapidity between the leading jet and the Higgs boson

in the qq̄ → ZH process at the LHC, for increasing cuts on the pT of the leading jet. The series of

plots on the left hand side are obtained for a Higgs boson of mass 115GeV, while those on the right

correspond to a Higgs boson of mass 300GeV. The colour assignment of the various predictions is

described inset, it is the same as for earlier Tevatron predictions for qq̄ → HW± in Fig 14.

will emit radiation into the same high pT region with probability PPH
mn

= 1 − ∆
R̂

(mn).

Neglecting kinematically suppressed O
(
α2

S

)
terms, as in the case of the MEC, this gives,

PPH
mn

=

∫

mn

dΦR1

R̂1 (ΦB ,ΦR1
)

B (ΦB)
. (5.7)
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Comparing eqs. (5.4) and (5.7), we see that the emission rates in the high pT region,

from POWHEG and the MEC, are the same up to the scale used in the strong coupling

constant (in the former it is pT while in the latter it is mT ). These corresponding emission

rates are evident in the pT spectra in figures 9 and 13. It is also clear that MC@NLO

will emit into this region less often than the other two since, whereas the POWHEG and

Herwig++ simulations have an emission probability inversely proportional to the Born cross

section B (ΦB), the probability of emission in MC@NLO is inversely proportional to the,

larger, NLO cross section, B (ΦB). This argument is also supported by what we have seen

in the pT spectra. Essentially we have

PHW
mn

≈ PPH
mn

≈ KPNLO
mn

(5.8)

where K is the relevant NLO K-factor. For processes with smaller K-factors the differ-

ences in the population of the dead zone in each approach should not differ too much but

MC@NLO will be systematically softer than POWHEG and Herwig++.

Is one of these probabilities more correct than the others? In ref. [41] the authors

compared the Higgs boson pT spectrum from their POWHEG simulation to NNLO predic-

tions [55, 56] and found that they agreed better than those of MC@NLO. The amount of

radiation produced in the high pT dead zone in the case of the fixed order, NNLO, Monte

Carlo used in ref. [41] should be the relevant fraction of the NNLO cross section

PNNLO
mn

(ΦB) =

∫

mn

dΦR1

[
R̂1 (ΦB ,ΦR1

) + R1+1 (ΦB ,ΦR1
) +

∫
dΦR2

R2 (ΦB ,ΦR1
,ΦR2

)

]

÷ dσNNLO (ΦB) , (5.9)

where the sum of the last two terms in the numerator represents the finite combination of

the one-loop single emission matrix element interfering with the tree-level single emission

matrix element, and the squared double emission matrix element respectively, including

PDF and flux factors. Since the numerator of PNNLO
mn

is O (αS), if we omit terms O
(
α3

S

)

in PNNLO
mn

we can replace the NNLO differential cross section in the denominator by the

NLO one (eq. (3.24)), whence it follows that

PNNLO
mn

(ΦB) =

∫

mn

dΦR1

R̂1 (ΦB,ΦR1
)

B (ΦB)

[
1 − B (ΦB)

B (ΦB)
+

R1 (ΦB ,ΦR1
)

R̂1 (ΦB,ΦR1
)

]
, (5.10)

where B (ΦB) was defined in eq. (2.2) and R (ΦB ,ΦR1
) is defined analogously as

R1 (ΦB ,ΦR1
) = R̂1 (ΦB,ΦR1

) + R1+1 (ΦB,ΦR1
) +

∫
dΦR2

R2 (ΦB,ΦR1
,ΦR2

) .(5.11)

Whereas the NNLO rate has R1 in the numerator all of the others just contain the

term corresponding to the squared single emission matrix element R̂1. Replacing R1 → R̂1

in eq. (5.10) gives eq. (5.6). We can consider B/B and R1/R̂1 as K-factors for the processes

gg → H and gg → H + jet, differential in ΦB and {ΦB ,ΦR1
}, respectively. One can see

from eqs. (5.7) and (5.10) that if these two K-factors coincide so too will the rates for

the POWHEG and NNLO calculations. In fact this seems to be more-or-less the case for
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gg → H and gg → H + jet processes, which have very similar K-factors of around 1.6 /

1.7 [73]. It then seems quite feasible that the pT spectrum of the Higgs boson in gluon

fusion should be better modelled by the POWHEG approach, as was found to be the case

in ref. [41].

Equation (5.10) does not tell us that POWHEG will generally reproduce higher orders

better than MC@NLO. According to eq. (5.10) if R1/R̂1 is more-or-less one and B/B is

significantly greater than one then MC@NLO will give a better estimate of PNNLO
mn

than the

POWHEG approach.

6 Conclusion

In this work we have fully realized the POWHEG NLO matching prescription for Higgs

boson production via gluon fusion and Higgs-strahlung processes, within the Herwig++

Monte Carlo event generator, including truncated shower effects to correctly include

colour coherence.

The cross sections and parton level NLO distributions were found to be in very good

agreement with the MCFM NLO Monte Carlo. The shapes of the emission spectra from

the full simulation, including parton shower effects, are seen to broadly agree well with the

older matrix element correction method and also MC@NLO.

We observe that the pT spectra from the MC@NLO program tend to be softer than

those of POWHEG and the matrix element correction method. We ascribe this effect to

differences, at the level of O
(
α2

S

)
terms, beyond the stated accuracy of all approaches, in

the rate at which they emit radiation into the so-called dead zone, associated to high pT

and wide angle emissions. We have been able to estimate the magnitude of the relative

difference with a fair degree of success and, based on this line of reasoning, we presented

an argument for why the POWHEG method appears to better reproduce the NNLO Higgs

boson pT spectrum in gluon fusion.

Separately, we have shown that a mis-match between terms of this magnitude manifests

itself as marked sensitivity to the unphysical dead zone partition, for the predictions of the

rapidity difference distributions yjet − yH and yjet − yVH, for both the matrix element

correction method and MC@NLO. These distributions acquire irregularities in the central

region corresponding to wide angle emissions. This would seem to rule out the possibility

of these two methods giving a good approximation of unenhanced NNLO effects in these

distributions. Conversely, the POWHEG predictions for these distributions are smooth and

physical in appearance, by construction, they have no sensitivity to the dead zone partition.

At present there is no known method of consistently including exact NNLO fixed order

calculations within a parton shower simulation. An approximate means of doing this,

involving the reweighting of PYTHIA [64] and MC@NLO events such that they reproduce

certain NNLO distributions, has been recently carried out in ref. [74]. Based on the findings

discussed above, it is our expectation that applying the same reweighting technique to

POWHEG events should lead to further improvements in those predictions.

Both the gluon fusion and Higgs-strahlung simulations we have presented here are al-

ready available in Herwig++2.3. The algorithm we have used to implement the POWHEG

– 37 –



J
H
E
P
0
4
(
2
0
0
9
)
1
1
6

formalism, specifically that part concerning the inverse mapping of the hardest emission

kinematics to a set of shower variables has further applications in multi-leg matching

procedures e.g. the CKKW method [35, 36]. Likewise, the general formulae leading to

eqs. (3.4), (3.24), for the phase space and differential cross-section for a + b → n, can be

readily used to implement other NLO calculations such as those in refs. [58–60]. This work

is already at an advanced stage and will appear in the forthcoming version of Herwig++.
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A Regularized and unregularized splitting functions

This appendix contains the splitting functions needed in the NLO calculations. The bare

(spin averaged) splitting functions in n = 4 − 2ǫ dimensions are of the form

P̂
i,eic

(x; ǫ) = P̂
i,eic

(x) + ǫP̂ ǫ

i,eic
(x) ,

where

P̂gg (x) = 2CA

[
x

1 − x
+

1 − x

x
+ x (1 − x)

]
, P̂ ǫ

gg (x) = 0,

P̂qq (x) = CF

[
1 + x2

1 − x

]
, P̂ ǫ

qq (x) = −CF (1 − x) ,

P̂qg (x) = CF

[
1 + (1 − x)2

x

]
, P̂ ǫ

qg (x) = −CF x,

P̂gq (x) = TR [1 − 2x (1 − x)] , P̂ ǫ
gq (x) = −2TR x (1 − x) + O (ǫ) .

We write the ‘customary’ regularized Altarelli-Parisi equations kernels using the ρ-

distributions as

P
i,eic

(x) = P ρ

i,eic
(x) + C

i,eic

(
p

i,eic
+ 4 ln η

)
δ (1 − x) ,
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where

P ρ
gg (x) = 2CA

[
x

(1 − x)ρ
+

1 − x

x
+ x (1 − x)

]
, Cgg = CA, pgg =

2πb0

CA
,

P ρ
qq (x) = CF

[
1 + x2

(1 − x)ρ

]
, Cqq = CF , pqq =

3

2
,

P ρ
qg (x) = CF

[
1 + (1 − x)2

x

]
,

P ρ
gq (x) = TR

[
x2 + (1 − x)2

]
,

and

b0 =
1

4π

(
11

3
CA − 4

3
TRnlf

)
,

with all other p
i,eic

and C
i,eic

being equal to zero.
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